

Engineering, Operations & Technology

International Conference on Flow Physics and its Simulation In memory of Prof. Jaw-Yen Yang

CFD Simulation of Serpentine S-Duct With Flow Control

December 03-05, 2016 National Taiwan University

Lie-Mine Gea Associate Technical Fellow The Boeing Company Huntington Beach, CA

Outline

Engineering, Operations & Technology

Experimental & CFD Models

- ONERA test model
- Overset Grids for Half Model
- OVERFLOW RANS/URANS

□ Validation

- Surface Pressures
- Pressure contours at PAI

□ Passive Flow Control

- Effects of VG number, height, and orientation angle
- Recovery and Distortion

□ Active Flow Control

- Blowing jets model

□ Time Accurate Run (URANS)

Conclusions

S-duct Test Case (serpentine diffuser)

Nomenclature

- Flow in +X direction
- Aerodynamic Interface Plane (AIP)
- \succ Polar angle in circumferential direction (Φ)

Overset Grid System

Overset Grid System

Flow Solver/Boundary Conditions

Engineering, Operations & Technology

OVERFLOW (RANS): NASA developed/overset technique 6 3 level multi-grid > central diff, matrix dissipation SST turbulence model 5 specify mass flow: 2.427 kg/s (standard case) 1.356 kg/s (optional case) **Boundary Conditions:** $M_{\infty} = 0.01$ free stream/characteristic condition no-slip adiabatic wall > symmetry plane > specify mass flow

Copyright © 2012 Bo

Validation – Surface Pressures

Validation – Pressure Contours at AIP

Engineering, Operations & Technology

Passive Flow Control - VGs

Passive Flow Control - VG Number Effect

Passive Flow Control - VG Number Effect

Engineering, Operations & Technology

Passive Flow Control - VG Number Effect

Engineering, Operations & Technology

Mach contours at different X cut

No VGs vs With VGs (mass flow = 2.427 kg/s)

Engineering, Operations & Technology

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Passive Flow Control - VG Height Effect

Passive Flow Contorl - VG height Effect

Engineering, Operations & Technology

Passive Flow Control – VG Angle Effect

Passive Flow Control - VG Angle Effect

Engineering, Operations & Technology

Passive Flow Contorl - VGs

Engineering, Operations & Technology

Engineering, Operations & Technology

Time Accurate Run (URANS)

Time Accurate Results – ONERA S-Duct

Time Accurate Results – ONERA S-Duct

- □ CFD simulation using Overset grid approach is conducted for serpentine S-duct with and without VGs
- **CFD** results are validated with experimental data
- □ VG configurations include VG number, height, and orientation angle are simulated and studied
- Recovery and circumferential distortion are computed to measure flow quality
- □ CFD based AFC technique is employed to improve the flow quality
- □ AFC offers better improvement relative to passive control

Engineering, Operations & Technology

Back Up Charts

Validation – Turbulence Model

Results – Symmetric Plane Mach and Pi/Pio Contours

No VGs vs With VGs (mass flow = 2.427 kg/s)

<u>Results – AIP Mach and Pi/Pio Contours</u> No VGs vs With VGs (mass flow = 2.427 kg/s)

Results – Mach contours at different X cut

No VGs vs With VGs (mass flow = 2.427 kg/s)

Engineering, Operations & Technology

Results – Mach contours at different X cut

No VGs vs With VGs (mass flow = 2.427 kg/s)

Engineering, Operations & Technology

Results – Mach contours at different X cut

No VGs vs With VGs (mass flow = 2.427 kg/s)

Engineering, Operations & Technology

<u>Results – Pi/Pio Contours at different X cut</u>

No VGs vs With VGs (mass flow = 2.427 kg/s)

<u>Results – Pi/Pio Contours at different X cut</u>

No VGs vs With VGs (mass flow = 2.427 kg/s)

<u>Results – Pi/Pio Contours at different X cut</u>

No VGs vs With VGs (mass flow = 2.427 kg/s)

Engineering, Operations & Technology

Results – Mach & Pi/Pio Contours

No VGs (mass flow = 2.427 kg/s)

Results – Mach & Pi/Pio Contours

With VGs (mass flow = 2.427 kg/s)

Results – BL Profiles (x=-76.58 mm)

VGs vs No VGs (mass flow = 2.427 kg/s)

Copyright © 2012 Boeing. All rights reserved.

Results – BL Profiles (x=-76.58 mm)

No VGs (mass flow = 2.427 kg/s)

Results – AIP Mach Contours

No VGs vs With VGs (mass flow = 2.427 kg/s)

Results – AIP Pi/Pio Contours

No VGs vs With VGs (mass flow = 2.427 kg/s)

Passive Flow Contorl - VGs

Engineering, Operations & Technology

Passive Flow Contorl - VGs

Engineering, Operations & Technology

Results – Mach & Pi/Pio Contours

Standard Case (mass flow = 2.427 kg/s)

Engineering, Operations & Technology

Passive vs Active Flow Control

Passive vs Active Flow Control

